Sunrise: instrument, mission, data and first results

The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system and further infrastructure. The first science flight of Sunrise yielded high-quality data that reveal the structure, dynamics and evolution of solar convection, oscillations and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm.

SUNRISE/IMaX observations of convectively driven vortex flows in the Sun

We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time series, we find some 3.1e-3 vortices/(Mm^2 min), which is a factor of 1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 min, with a standard deviation of 3.2 min. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 min).

Sunrise: instrument, mission, data and first results

The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system and further infrastructure. The first science flight of Sunrise yielded high-quality data that reveal the structure, dynamics and evolution of solar convection, oscillations and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm.

SUNRISE/IMaX observations of convectively driven vortex flows in the Sun

We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time series, we find some 3.1e-3 vortices/(Mm^2 min), which is a factor of 1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 min, with a standard deviation of 3.2 min. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 min).

Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data.

Más sobre resultados de IMaX/SUNRISE (El Mundo)

El telescopio solar Sunrise ha desvelado una "inesperada" actividad en el Sol, según los primeros resultados de esta misión publicados en doce artículos en la revista The Astrophysical Journal Letters.
Para leer más:
http://www.elmundo.es/elmundo/2010/10/29/ciencia/1288365084.html









Primeros resultados de IMaX/SUNRISE (El País)

Cuando hace ya más de ocho años comenzamos a pergeñar lo que sería el magnetógrafo solar IMaX (siglas del nombre inglés Imaging Magnetograph eXperiment), todo era anhelo, ilusión, emoción y ambiciones. Un equipo de científicos e ingenieros de cinco instituciones españolas (el Instituto de Astrofísica de Canarias, el Instituto de Astrofísica de Andalucía, el Instituto Nacional de Técnica Aeroespacial, la Universidad de Valencia y la Universidad Politécnica de Madrid) comenzábamos una larga andadura en común.
Continúa en:

V1 non-linearities emerge from local-to-global non-linear ICA

It has been argued that the aim of non-linearities in different visual and auditory mechanisms may be to remove the relations between the coefficients of the signal after global linear ICA-like stages. Specifically, in [Schwartz and Simoncelli 01], it was shown that masking effects are reproduced by fitting the parameters of a particular non-linearity in order to remove the dependencies between the energy of wavelet coefficients.

Coded Masks

The Coded Mask Thing

X-rays are composed by high energy photons. It's difficult to get this photons to interact with matter in a way that they can be focused as we do with optical bands photons. Therefore, we need to use some trick to get our high energy images.

INTEGRAL long-term monitoring of the Supergiant Fast X-ray Transient XTE J1739-302

 In the past few years, a new class of High Mass X-Ray Binaries (HMXRB)
 has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT).
 These are X-ray binary systems with a compact companion orbiting a
 supergiant star which show very short and bright outbursts in a series
 of activity periods overimposed on longer quiescent periods. Only very
 recently the first attempts to model the behaviour of these sources have
 been published, some of them within the framework of accretion from clumpy

Date: 
Sunday, 1 Jun 2008
Syndicate content