Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review

Lin Gao, Xiaofei Wang, Brian Alan Johnson, Qingjiu Tian, Yu Wang, Jochem Verrelst, Xihan Mu, Xingfa Gu

International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
Institute for Global Environmental Strategies, Hayama, Kanagawa 240-0115, Japan
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Image Processing Laboratory (IPL), Parc Científic, Universitat de València, Paterna, València 46980, Spain
State Key Laboratory of Remote Sensing Science, College of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China

ARTICLE INFO

Keywords:
Vegetation fractional cover
Remote sensing
Normalized difference vegetation index
Review
Spectral unmixing

ABSTRACT

Green fractional vegetation cover (f_v) is an important phenotypic factor in the fields of agriculture, forestry, and ecology. Spatially explicit monitoring of f_v via relative vegetation abundance (RA) algorithms, especially those based on scaled maximum/minimum vegetation index (VI) values, has been widely investigated in remote sensing research. Although many studies have explored the effectiveness of RA algorithms over the past 30 years, a literature review summarizing the corresponding theoretical background, issues, current state-of-the-art techniques, challenges, and prospects has not yet been published. The overall objective of the present study was to accomplish a comprehensive and systematic review of RA algorithms considering these factors based on the scientific papers published from January 1990 to November 2019. This review revealed that the key issues related to RA algorithms is the determination of the appropriate normalized difference vegetation index (NDVI) values of the full vegetation cover and bare soil (denoted hereafter by NDVI_∞ and NDVI_s, respectively). The existing methods used to correct for these issues were investigated, and their advantages and disadvantages are discussed in depth. In literature trends, we found that the number of reported studies in which RA algorithms were used has increased consistently over time, and that most authors tend to utilize the linear NDVI model, rather than other models in the RA algorithm family. We also found that RA algorithms have been utilized to analyze the images with spatial resolutions ranging from the sub-meter to kilometer, most commonly, using images of 30-m spatial resolution. Finally, current challenges and forward-looking insights in remote estimation of f_v using RA algorithms are discussed to guide future research and directions.

1. Introduction

Green fractional vegetation cover (f_v), which describes a vertical projection of the areal proportion of a landscape occupied by green vegetation (Deardorff, 1978), is an essential phenotypic factor used to characterize the spatial pattern of vegetation types. The synoptic quantification of f_v plays a pivotal role in monitoring vegetation growth status and crop yields (Allen and Pereira, 2009; de la Casa et al., 2018), understanding Earth system processes (e.g., climate change, energy exchanges, and biogeochemical cycles) (Foley et al., 2000; Li et al., 2005; Wang et al., 2012; Wei et al., 2018), and elucidating relationships between human activities and the environment (e.g., deforestation, land degradation, desertification, and landscape reconstruction) (Jiang et al., 2017; Tong et al., 2016; Xin et al., 2008).

In the last few decades, by virtue of the huge volume of data obtained from remote sensors and the innovations in computing and image analysis technologies, the value of remote sensing image processing for retrieving f_v over long time periods and large geographic extents (e.g., on a regional to global scale) has been proven repeatedly (Ge et al., 2018; Jing et al., 2011; Zeng et al., 2003). Methods for
deriving \(f_c \) based on remotely sensed data can be generally categorized into six groups (Guan et al., 2012; Jia et al., 2013): (i) relative vegetation abundance (RA) algorithms scaled by maximum and minimum vegetation index values (Gutman and Ignatov, 1997; Wittich and Hansing, 1995); (ii) spectral mixture analysis (SMA) algorithms (Roberts et al., 1998; Settle and Drake, 1993); (iii) spectral-based supervised classification algorithms (Friedli et al., 2002; Okin et al., 2013); (iv) physically-based models (e.g., multi-angle geometric-optical models) (Chopping et al., 2008; Xiao et al., 2016); (v) machine learning algorithms (Stojanova et al., 2010; Verrelst et al., 2012); and (vi) other approaches.

Among these methods, RA algorithms provide the simplest \(f_c \) estimation approach (Mu et al., 2018) and include the following types: the semi-empirical NDVI model (Choudhury et al., 1994), linear NDVI model (Qi et al., 2000), NDVI mixture model (Wittich, 1997), and quadratic NDVI model (Carlson and Ripley, 1997), as well as analogous versions of linear and quadratic models based on vegetation indices apart from NDVI (Cho et al., 2014; Johnson et al., 2012). RA algorithms were first proposed in the 1990s to characterize land surface interactions remotely (Choudhury et al., 1994; Gillesie et al., 1997; Price, 1990; Valor and Caselles, 1996). Gutman and Ignatov (1998) were the first to attempt to identify the relationship between the satellite-derived scaled NDVI (NDVI) , defined as again normalized NDVI and \(f_c \) over the global scale. Since then, because of their convenience and ease of interpretation, RA algorithms have received considerable attention in macroscopic monitoring of regional and global \(f_c \) and associated land surface parameters, such as the leaf area index (LAI); impervious surface (IS) cover; soil moisture content (M); land surface emissivity (LSE); surface radiant temperature (T\(s \)); evapotranspiration (ET); and surface energy fluxes (SEF). The results of literature searches in the Web of Science Core Collection database indicate that a large amount of the related literature has documented the performance of RA algorithms for specific study areas/data sources/applications since the 1990s, with approximately 25% of the relevant studies on \(f_c \) using RA algorithms (see Section 4). Nonetheless, throughout the history of its development, this topic has rarely been reviewed systematically. Given the increased demand for understanding the effects of environmental changes (e.g., land-use change and climate change) on the vegetation cover at regional to global scales and the growing number of publications related to RA algorithms in recent years, a systematic review of the background, issues, current status, challenges, and perspectives of RA algorithms is undoubtedly required.

The purpose of the present review is to provide a comprehensive overview of the scientific literature related to RA algorithms, to discuss the key issues identified therein, to offer possible prospects and insights for further research and directions. The specific objectives of this review are fourfold:

1. To elucidate the basic theory, assumptions, and issues related to the use of RA algorithms (Section 2);
2. To discuss the published approaches for addressing the identified issues (Section 3);
3. To review the status quo and trends in development of RA algorithms and evaluate the advantages and disadvantages of different RA algorithms by investigating the selected literature (Section 4);
4. To identify key issues that need to be considered further and priorities for the future research (Section 5).

To focus on these goals, we divided the selected literature on RA algorithms into two groups (Fig. 1): methodological issues and indirect applications. Methodological issues include the methodological origin and improvement of RA algorithms and the application of RA algorithms in the field of estimating \(f_c \) based on remotely derived data. Indirect applications are those in which \(f_c \) estimates are used as an intermediate variable for the derivation of other land surface parameters.

2. Background and issues

RA algorithms are a set of linear or non-linear functional relationships between a scaled VI (usually the NDVI) and \(f_c \). They are used to estimate the green fractional vegetation cover or the fractional cover of photosynthetic vegetation based on the assumption that a pixel consists of a mixture of only two elements: green vegetation and soil. The theoretical basis of RA algorithms lies in the Beer–Lambert law and linear spectral mixture analysis (LSMA).

2.1. Semi-empirical NDVI model

A number of field observations conducted in dense, homogeneous crop canopies indicated that NDVI variations approached a saturation level asymptotically with an increase in LAI values, which could be approximately fitted to an exponential function of LAI (Asrar et al., 1984; Best and Harlan, 1985; Hatfield et al., 1984; Wiegand et al., 1990). This relationship could be expressed by the modified Beer—Lambert law as a general equation, given below, which has been validated by simulations (Baret and Guyot, 1991) and field experiments (Choudhury et al., 1994):

\[
VI = V_{\infty} + (V_1 - V_{\infty}) \times e^{-K_{VI}LAI}
\]

where \(V_{\infty} \) is the asymptotic value of the VI, when LAI tends toward infinity (usually full vegetation cover, i.e., \(f_c = 1 \)), \(V_I \) represents the value of the vegetation index for bare soil (i.e., \(f_c = 0 \)), and \(K_{VI} \) is the extinction coefficient driven by leaf optical properties (e.g., leaf angle distribution), the direction of the sun, and the viewing angle. It is likely that \(K_{VI} \) will lie in the range 0.8–1.3, when the VI is set to be NDVI for leaf inclinations between 30° and 70° (Baret and Guyot, 1991).

The fractional vegetation cover can be calculated according to:

\[
f_c = 1 - P_0(0)
\]

where \(P_0(0) \) is the probability of a canopy gap fraction at 0° zenith angle, which can be described as a simple exponential function of LAI (Nilson, 1971):

\[
P_0(0) = e^{-K_pLAI}
\]

where \(K_p \) is the attenuation factor analogous to \(K_{VI} \) depending on the canopy architecture.

Hence, as a result of mathematical manipulation with Eqs. (1), (2), and (3) to eliminate LAI, the semi-empirical relationship between \(f_c \) and the NDVI can be derived as follows (Baret et al., 1995; Wittich, 1997):

\[
f_c = 1 - \left(\frac{NDVI - NDVI_{\infty}}{NDVI_{\infty} - NDVI_{\infty}} \right)^{K_p/K_{VI}}
\]

According to Baret et al. (1995), the \(K_p/K_{VI} \) equals to 0.6175 for the NDVI.

2.2. Linear NDVI model and NDVI mixture model

LSMA is the simplest and most common spectral unmixing approach. It is based on the underlying physical assumption that the amount of photon multiple scattering between macroscopic materials is insignificant. LSMA describes a measured signal at each ground resolution element (i.e., pixel) as a linear combination of constituent spectral signatures representing the spectral characteristics of pure land-cover types (so-called endmembers) weighted according to their subpixel fractional cover (i.e. abundances) (Adams et al., 1986):

\[
r = \sum_{i=1}^{n} (f_i \times \eta_i) + \xi
\]

where \(r \) is the mixed pixel signal, \(f_i \) is the fractional cover of endmember \(i \), and \(\eta_i \) is the spectral signal of endmember \(i \). Here, \(n \) is the total number of endmembers, and \(\xi \) is the model residual error term.
If only two endmembers (green vegetation and bare soil) are considered, then, following the idea of Deardorff (1978), LSMA could be directly applied to retrieve f_c from the NDVI value of a mixed pixel. As a result, we can yield the highly-simplified formulation for the approximation of f_c (i.e., the linear NDVI model), which is also commonly referred to as the pixel dichotomy model, dimidiate pixel model, or two-endmember model (Qi et al., 2000; Wittich and Hansing, 1995):

$$f_c = \frac{\text{NDVI}_{\text{soil}} - \text{NDVI}_{\text{vegetation}}}{\text{NDVI}_{\text{soil}} - \text{NDVI}_{\text{vegetation}}},$$

which can be rewritten as:

$$f_c = a \times \text{NDVI} + b$$

with $a = \frac{1}{\text{NDVI}_{\text{soil}} - \text{NDVI}_{\text{vegetation}}}$, $b = -\frac{\text{NDVI}_{\text{soil}}}{\text{NDVI}_{\text{soil}} - \text{NDVI}_{\text{vegetation}}}$.

The procedure described above was also further generalized into mosaic-pixel models involving variable, dense, and non-dense vegetation models by Gutman and Ignatov (1998) under the notion that the same NDVI value may be obtained from different subpixel structures with respect to vertical densities. The variable vegetation model is based on heterogeneous vegetation canopies having variable vertical densities, because more than one vegetation type may exist within a pixel, especially in a coarse resolution image. However, the extraction of information about multiple vegetation endmembers at the subpixel level based on LSMA is difficult. The latter two models (i.e., dense and non-dense vegetation) underscore homogeneous vegetation canopies with intra-class variations in vertical density. The root cause of the differences between mosaic-pixel models, however, is still an issue related to accurate derivation of the NDVI value of the vegetated part of the pixel. Therefore, in this paper, we discuss this inherent problem by only considering the linear NDVI model.

Likewise, LSMA can also be applied to the reflectance terms (i.e., red and near-infrared (NIR) bands) in the NDVI equation:

$$\rho_{\text{pixel}} = f_c \times \rho_{\text{soil}} + (1 - f_c) \times \rho_{\text{vegetation}}$$

where ρ_{pixel}, ρ_{soil}, and $\rho_{\text{vegetation}}$ are the pixel spectral reflectance, asymptotic spectral reflectance of vegetation, and bare soil spectral reflectance in the i band, respectively, and i is the red or NIR band. Then, by substituting the NDVI equation for Eq. (8), a non-linear relationship between NDVI and f_c can be obtained (Verstraete and Pinty, 1991; Wittich, 1997):

$$f_c = \frac{\text{NDVI} - \text{NDVI}_{\text{soil}}}{\text{NDVI}_{\text{soil}} - \text{NDVI}_{\text{vegetation}}} + (1 - a) \times (\text{NDVI} - \text{NDVI}_{\text{soil}})$$

with $a = \frac{\rho_{\text{soil}}}{\rho_{\text{soil}} + \rho_{\text{vegetation}}}$, ρ_{soil} and $\rho_{\text{vegetation}}$ are the asymptotic spectral reflectance of vegetation at red and NIR wavelength, respectively. Here, ρ_{soil} and $\rho_{\text{vegetation}}$ are the bare soil spectral reflectance at the red and NIR wavelength, respectively. For brevity, Eq. (9) is termed the NDVI mixture model. It should be noted that, although the linear NDVI model and the NDVI mixture could both be applied based on LSMA, Eqs. (6) and (9) are evidently not equivalent because of the poor performance of the NDVI in terms of the associative property (Price, 1990; Valor and Caselles, 1996). However, according to Wittich and Hansing (1995), these discrepancies between the two models are minor in the data range of $0.18 \leq \text{NDVI} \leq 0.69$.

2.3. Quadratic NDVI model

Based on experimental observations, Gillies and Carlson (1995) obtained the consistent relationship between NDVI^2 and f_c (i.e., the quadratic NDVI model), which was further confirmed in another study (Carlson and Ripley, 1997). This relationship is defined as follows:

$$f_c = (\text{NDVI}^2)^2 = \left(\frac{\text{NDVI} - \text{NDVI}_{\text{soil}}}{\text{NDVI}_{\text{soil}} - \text{NDVI}_{\text{vegetation}}}\right)^2$$

Notably, the NDVI in this quadratic model is rarely substituted for other vegetation indices, as Eq. (10) is valid specifically for the NDVI.

2.4. Issues related to the RA algorithms

In RA algorithms, both the $\text{NDVI}_{\text{soil}}$ and $\text{NDVI}_{\text{vegetation}}$ parameters need to be known a priori. $\text{NDVI}_{\text{soil}}$, however, is known to vary depending on the...
plant species and phenological cycle, while NDVI varies by soil type. Furthermore, the NDVI is also not always an optimal VI for \(f_c \) retrieval because of inherent characteristics such as its saturation problem in high density canopies and sensitivity to scale, background, and atmospheric variances.

Therefore, the major hurdle in the quantitative retrieval of \(f_c \) is to develop the way how to determine the NDVI\(_{\text{c}}\) and NDVI\(_{\text{s}}\) thresholds, and how to compensate for the inherent limitations of NDVI. Furthermore, the assumption that a pixel consists only of green vegetation and bare soil ignores the non-photosynthetic vegetation (NPV), e.g., aboveground dead biomass, litter, and wood, which might introduce several uncertainties influencing \(f_c \) estimates. Therefore, the way to mitigate the NPV effect is also one of the main issues affecting the inversion accuracy of RA algorithms. As the NPV effect is essentially caused by this assumption, only the former issue has been continuously investigated in the past three decades.

3. Methods for correcting issues

3.1. Methods for determining the values of NDVI\(_{\text{c}}\) and NDVI\(_{\text{s}}\)

The published approaches for determining the values of NDVI\(_{\text{c}}\) and NDVI\(_{\text{s}}\) can, in general, be divided into two categories: traditional approaches that assign a priori fixed value for the entire remotely sensed image and improved methods in which both values vary according to geographical factors, e.g., species and soil types (the reference values are listed in Table 1). The former includes:

1. Identification of pure vegetation (or bare soil) pixels through field observations (e.g., global positioning system (GPS) coordinates at locations with full vegetation cover and pure bare soil (Wang and Qi, 2008) and field-measured pure vegetation/soil spectral data (Zhou et al., 2009)) or higher spatial resolution images (Imnokova et al., 2015; Jiao et al., 2014);
2. Direct analysis of remotely sensed images to obtain the accumulative maximum and minimum NDVI values in the area under investigation (Ge et al., 2008; Gutman and Ignatov, 1998; Wang et al., 2014);
3. Application of end-member extraction approaches (e.g., pixel purity index (PPI) method and two-dimensional feature space plots) (Jia et al., 2017; Wang et al., 2014);
4. Estimation of NDVI\(_{\text{c}}\) via inversion modeling of the relationship between the remotely derived NDVI and in situ \(f_c \) measurements (Kuang et al., 2015; Xiao and Moody, 2005);
5. Adoption of theoretically fixed values from the radiative transfer model (Liu et al., 2008).

However, variations in the spectral properties of vegetation (or soil) at the subpixel level are related not only to the plant species (or type), but also to the health of the vegetation and the leaf water content (or soil organic matter, soil moisture content, and soil surface roughness). As shown in Fig. 2, NDVI\(_{\text{c}}\) values identified in the literature vary among different vegetation types, and significant differences are observed even within the same vegetation type. The global NDVI\(_{\text{c}}\) values proposed by Gutman and Ignatov (1998) and Jiang et al. (2010) are generally lower than those obtained from a specific plant type. Similarly to NDVI\(_{\text{c}}\), NDVI\(_{\text{s}}\) varies over geographic regions because of changes in the chemical and physical attributes of soil, including organic matter content, grazed size, clay mineralogy, and water content from surface to subsurface even for the same scene in the image. The use of invariant NDVI\(_{\text{c}}\) and NDVI\(_{\text{s}}\) values is questionable, particularly for studies conducted over a large geographic area. Therefore, improved methods have been designed to compensate for these disadvantages using auxiliary data (e.g., land cover maps (Broxton et al., 2014; Vegas Galdos et al., 2012; Zeng et al., 2000; Zeng et al., 2003) and soil databases (Ding et al., 2016b; Montandon and Small, 2008; Wu et al., 2014)) or data yielded by spatial interpolation techniques used in geographic information system (GIS) (Johnson et al., 2012) or multi-angle observations (Mu et al., 2018; Song et al., 2017) to make both thresholds more compatible with the local vegetation/soil conditions.

In the present study, we aim to bring the characteristics, advantages, and limitations of these improved methods to the attention of the remote sensing community by means of the following descriptions and in depth discussion.

3.1.1. Evolution of approaches to determine NDVI\(_{\text{c}}\)

Zeng et al. (2000) developed a method to calculate the NDVI value for each land-cover category corresponding to 100% green vegetation cover (i.e., NDVI\(_{\text{c}}\)). In their study, the annual maximum NDVI value (NDVI\(_{\text{c}}\)) for a given pixel was calculated and used as a substitute for the pixel NDVI in the numerator of Eq. (6). Furthermore, a histogram of NDVI\(_{\text{c}}\) for each land-cover type was used to determine NDVI\(_{\text{c}}\), which was used as a proxy for NDVI\(_{\text{c}}\) in the denominator of Eq. (6). The annual maximum green vegetation fraction for a given pixel (\(f_c \)) was eventually quantified with a global invariant NDVI\(_{\text{c}}\) value of 0.05, according to the following formula:

\[
\hat{f}_c = \frac{\text{NDVI}_{\text{c, max}} - \text{NDVI}_c}{\text{NDVI}_{\text{c, max}} - \text{NDVI}_c}
\]

Although this method has been well-documented (Miller et al., 2006; Refslund et al., 2014; Scheftic et al., 2014; Vegas Galdos et al., 2012), several issues related to its use should be discussed further. First, there is a possibility of temporal or spatial mismatch between the remotely sensed data and the published land cover products, particularly, in areas that have undergone rapid land use/land cover (LULC) changes. For example, the land cover in the South China Karst region was previously predominately shrubs and trees; however, it has been gradually converted to bare soil owing to the increased exploitation of natural resources during the last half-century. Recently, however, there has been a significant increase in the vegetation cover in large parts of this district as a result of ecological rehabilitation and conservation efforts. Therefore, if the most recent satellite images together with outdated land cover maps are used to calculate NDVI\(_{\text{c}}\) in this region, the results will be unrealistic. Furthermore, the land cover product should be as accurate as possible (i.e., the LULC map should be optimized to fit the local context), or of a high resolution. Li and Zhang (2016) indicated that the \(f_c \) inversion accuracy over all of China was better with the ChinaCover product compared to the International Geosphere-Biosphere Program (IGBP) product, particularly in areas with high vegetation coverage. Second, the data for one full year from the same satellite sensor are a prerequisite for using Eq. (11) to estimate \(f_c \). Clearly, data continuity is crucial for the use of this interannual relationship described in Zeng et al. (2000). Therefore, it might not be feasible to use Eq. (11), especially in studies focused on medium to high resolution satellite remote sensing products (e.g., from the RapidEye and WorldView-2 satellites). This is due to the lack of consistency in the data availability, same as most optical remote sensing datasets. Third, \(f_c \) refers to the annual maximum green vegetation fraction. Consequently, \(f_c \) cannot be directly related to the real-time monitoring of surface greenness, although the annual maximum fractional vegetation cover may be useful for analyzing the interannual driving relationship between spatiotemporal variations of the vegetation cover and climatic factors (e.g., precipitation and temperature). Most agronomic studies focus rather on \(f_c \), which can provide real-time characterization of the vegetation growth status. In addition, the use of a fixed NDVI\(_{\text{c}}\) value in Eq. (11) is unreasonable, in particular for large areas covered by contrasting soil types, as the soil reflectance always varies together with pedological classes.

3.1.2. Evolution of approaches to determine NDVI\(_{\text{s}}\)

As opposed to conventional methods that involve setting a global invariant NDVI\(_{\text{s}}\) value for the whole satellite image, the method
<table>
<thead>
<tr>
<th>Technique/algorithm</th>
<th>Case study</th>
<th>Reference</th>
<th>Main functional vegetation types</th>
<th>NDVI_{th}</th>
<th>NDVI_{th}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of pure vegetation or bare soil pixel based on field measurements (e.g., GPS points, field-measured spectral data) or higher-resolution remotely sensed images</td>
<td>Wang and Qi (2008)</td>
<td>Forest</td>
<td>0.71</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imukova et al. (2015)</td>
<td>Crop</td>
<td>0.95</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jiao et al. (2014)</td>
<td>Forest and shrubbery</td>
<td>0.78</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ge et al. (2008)</td>
<td>Forest, crop, grassland, shrubbery</td>
<td>0.86</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wang et al. (2014)</td>
<td>Forest, crop</td>
<td>0.65</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jia et al. (2017)</td>
<td>Crop</td>
<td>0.941</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Analysis of remotely sensed images to obtain the cumulative maximum and minimum NDVI values (within a long-term series for a predefined land category classified by classifiers) in the investigated area</td>
<td>Ge et al. (2008)</td>
<td>Forest, crop, grassland, shrubbery</td>
<td>0.86</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wang et al. (2014)</td>
<td>Forest, crop</td>
<td>0.65</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Application of end-member extraction approaches (e.g., the PPI method or two-dimensional feature space plots) to determine minimum and maximum values</td>
<td>Jia et al. (2017)</td>
<td>Crop</td>
<td>0.941</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Inversion of the relationship between the remotely-derived NDVI and the actual fractional vegetation cover</td>
<td>Xiao and Moody (2005)</td>
<td>Grassland, shrubbery, woodland</td>
<td>0.637</td>
<td>−0.054</td>
<td></td>
</tr>
<tr>
<td>Theoretically fixed values from the radiative transfer model</td>
<td>Kuang et al. (2015)</td>
<td>Crop, forest, grassland</td>
<td>0.59</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Adaptation of the frequency histogram of the periodical maximum NDVI values (for each pixel for each biome classified by the auxiliary data, e.g., the land cover category and soil database) or cumulative percentages of NDVI in the entire study area based on image statistics</td>
<td>Liu et al. (2008)</td>
<td>Crop</td>
<td>0.925</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zeng et al. (2000); Miller et al. (2006)</td>
<td>Forest, grassland, crop</td>
<td>75th percentile of the annual maximum NDVI</td>
<td>0.05 by the 5th percentile of the annual maximum NDVI for barren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verger et al. (2009)</td>
<td>Shrubbery</td>
<td>90th percentile of the annual maximum NDVI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Li et al. (2005)</td>
<td>Crop</td>
<td>0.87</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ge et al. (2018)</td>
<td>Grassland</td>
<td>0.89</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.5% cumulative percentage of the NDVI</td>
<td>0.95% cumulative percentage of the NDVI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adoption of spatial interpolation technologies</td>
<td>Johnsen et al. (2012)</td>
<td>Forest</td>
<td>In situ: 0.891</td>
<td>0.203</td>
<td>MODIS: 0.806</td>
</tr>
<tr>
<td></td>
<td>Li et al. (2014)</td>
<td>Grassland</td>
<td>MODIS: 0.806</td>
<td>0.118</td>
<td>Landsat-8 OLI: 0.807</td>
</tr>
<tr>
<td>Use of in situ measurements with a substantial spectral signal gap between in situ measurement and the pure pixel endmember value</td>
<td>Song et al. (2017)</td>
<td>Crop</td>
<td>0.903</td>
<td>0.072</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mu et al. (2018)</td>
<td>Grassland/Forest, crop, shrubbery</td>
<td>0.908</td>
<td>0.029</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: MODIS = Moderate Resolution Imaging Spectroradiometer; OLI = Operational Land Imager.
proposed by Montandon and Small (2008) uses global databases of NDVI$_{i}$ together with information on historical NDVI$_{pixel}$. Values to estimate the statistically most-likely fractional vegetation cover (f^*_{c}):

$$f^*_{c} = \frac{\sum_{i=1}^{n} (NDVI_{pixel} - NDVI_{i})}{n}$$

(12)

where NDVI$_{pixel}$ is the NDVI of a pixel; NDVI$_{i}$ is the NDVI value of the i-th bare soil in the global soil spectral libraries and is lower than or equal to NDVI$_{pixel}$. n is the number of the values meeting the condition NDVI$_{i} \leq$ NDVI$_{pixel}$. NDVI$_{min}$ is calculated using the approach developed by Zeng et al. (2000), and a is equal to 1 for the linear NDVI model and 2 for the quadratic NDVI model. It should be noted that in the case where NDVI$_{pixel}$ is greater than NDVI$_{min}$, the green vegetation fraction is assigned a value of 1.0.

The biases of the NDVI$_{i}$ estimates could lead to substantial uncertainties in the derivation of f^*_{c} using RA algorithms (Montandon and Small, 2008; Song et al., 2017). The use of a collection of NDVI$_{i}$ values at each pixel can partially mitigate the effect of uncertainties in the NDVI$_{i}$ estimates on the retrieval of the green vegetation fraction. However, in addition to the preceding discussion on the NDVI$_{pixel}$ calculation using the approach proposed by Zeng et al. (2000), other considerations regarding this approach should be noted. First, it is unrealistic to expect that all spectrums in the global soil spectral libraries are presented in a fine-scale study area (Johnson et al., 2012). Second, some soil spectrums in the soil spectral libraries that are not presented in the given pixel might also satisfy the criterion NDVI$_{i} \leq$ NDVI$_{pixel}$. A further constraint is the use of the local historical lowest NDVI value instead of NDVI$_{pixel}$ to ascertain the range of possible NDVI$_{i}$ values more accurately. However, errors associated with f^*_{c} could still occur. This is because there is no guarantee of a unique and authentic relationship between the spectrum of a soil endmember within a pixel and the soil spectral reflectance in the spectral libraries. Following the ideas of Zeng et al. (2000) and Montandon and Small (2008), Wu et al. (2014) and Ding et al. (2016b) attempted to calculate NDVI$_{min}$ and NDVI$_{i}$ for each vegetation type and soil group based on IGBP and the Harmonized World Soil Database (HWSD) classification schemes. However, the values of NDVI$_{min}$ and NDVI$_{i}$ still remain biased, as it is difficult to identify accurately the number and type of endmembers within a pixel, as well as its corresponding spectral signatures (Ding et al., 2016b; Wu et al., 2014). Third, the f^*_{c} estimates are inherently statistical values that can be closer to the real green vegetation fraction calculated by using the NDVI$_{i}$ values of the authentic soil and vegetation endmembers. Fourth, in view of data interdependency, it is cumbersome to suffice the requirement of the prior knowledge of the land cover type information or the soil spectral libraries for applying the approach proposed by either Zeng et al. (2000) or Montandon and Small (2008). Hence, if no available auxiliary data exist (or these data are outdated/mismatching to the used remote sensing images), it is not clear how to use these approaches to estimate NDVI$_{min}$ and NDVI$_{i}$ values.

3.1.3. Simultaneous determination of NDVI$_{min}$ and NDVI$_{i}$

To address the invariant threshold problem discussed above, Johnson et al. (2012) attempted to use GIS spatial interpolation techniques, such as inverse distance weighting (IDW) and ordinary kriging (OK) to determine NDVI$_{min}$ and NDVI$_{i}$ at each pixel location. This approach is based on the assumption that it is likely that the spectral characteristics of the vegetation (or soil) endmember are more similar to the nearer vegetation (or soil) samples. The number of pure (vegetation or soil) samples and the performance of the spatial interpolation techniques are crucial to ensuring the accuracy of the interpolated NDVI$_{min}$ and NDVI$_{i}$ values. Consequently, this method may be more appropriate for scenarios where the multiplicity of pure vegetation and soil pixels are presented. However, its use might not be feasible in studies that are aimed at large geographic areas or use coarse resolution satellite images, as it is difficult to collect an adequate number of pure pixels as samples for spatial interpolation. Certainly, the use of more suitable interpolation methods can yield more reliable results.

In addition, recent studies (Mu et al., 2018; Song et al., 2017) suggested an alternative means of estimating NDVI$_{min}$ and NDVI$_{i}$ simultaneously without any prior knowledge, which usually is required in the approaches of Zeng et al. (2000) and Montandon and Small (2008). They utilized a directional reflectance dataset to develop the relationship between the directional green vegetation fraction (f^*_{c}) and...
NDVI at a particular viewing zenith angle (VZA, \(\theta \)) based on the linear NDVI model:

\[f^c = \frac{\text{NDVI}^c - \text{NDVI}^\theta}{\text{NDVI}^\infty - \text{NDVI}^\theta} \tag{13} \]

where \(\text{NDVI}^c, \text{NDVI}^\infty \) and \(\text{NDVI}^\theta \) are the directional NDVI, NDVI\(_\infty\) and NDVI, at \(\theta \), respectively.

Using a Markov-chain model linked according to the modified Beer–Lambert law, the gap fraction for a given LAI at \(\theta \) \((P_0(\theta))\) is expressed as, follows:

\[P_0(\theta) = e^{-G(\theta) \cdot L(A) \cdot \cos(\theta)} \tag{14} \]

where \(G(\theta) \) is the projection coefficient, which is approximately 0.5 around the zenith angle of 57°, and \(\Omega \) is the clumping index. Then, using the relationship defined by Eq. (2), Eqs. (13) and (14) were integrated as

\[\frac{\text{NDVI}^\infty - \text{NDVI}^c}{\text{NDVI}^\infty - \text{NDVI}^\theta} = e^{-G(\theta) \cdot L(A) \cdot \cos(\theta)} \tag{15} \]

Eq. (15) is based on the assumptions that the pure vegetation (or soil) is isotropic and that the viewing angle influences only mixed pixels consisting of vegetation and soil.

For calculating NDVI\(_\infty\) and NDVI, in the two studies different strategies were adopted. Song et al. (2017) used the MODIS Bidirectional Reflectance Distribution Function (BRDF)/Albedo products and the Global Land Surface Satellite (GLASS) LAI product to estimate the NDVI\(_\infty\) and NDVI values at the 57° VZA, using a 3 × 3 sliding window involving nine pixels and more than three equations based on Eq. (15). Mu et al. (2018) established two equations for VZAs of 55° and 60°, respectively, to describe the relationship defined by Eq. (2). After, they combined these two equations to eliminate \(G \), \(\Omega \) and LAI with the assumption that \(G \) and \(\Omega \) are invariant between VZAs of 55° and 60°:

\[
\begin{align*}
\cos 55° \cdot \ln(\text{NDVI}^\infty - \text{NDVI}^{55°}) - \cos 60° \cdot \ln(\text{NDVI}^\infty - \text{NDVI}^{60°}) &= (\cos 55° - \cos 60°) \cdot \ln(\text{NDVI}^\infty - \text{NDVI}^\theta) \\
\end{align*}
\tag{16}
\]

where \(\text{NDVI}^{55°} \) and \(\text{NDVI}^{60°} \) are the NDVI values of pixel \(i \) at VZAs of 55° and 60°, respectively. Finally, NDVI\(_\infty\) and NDVI can be calculated by using Eq. (16) with nine pixels within a 3 × 3 sliding window.

Despite achieving some success, the methods proposed by Song et al. (2017) and Mu et al. (2018) still have several limitations. First, the \(f^c \) estimation was conducted within a sliding window of a certain size in both studies. Consequently, the size of the sample window is important for minimizing differences in NDVI\(_\infty\) or NDVI across the window pixels, as all pixels within the window have the same values of NDVI\(_\infty\) or NDVI. Although it was verified that a 3 × 3 window was appropriate for the 500 m or 1 km spatial resolution satellite images used in both studies, with the exception of the heterogeneity within pixel, it is still difficult to identify, whether a single vegetation type or soil group is presented in the sliding window, especially in complex and heterogeneous ecosystems. In contrast to the use of a sliding window, the time series of remotely sensed observations may be more suitable for deriving both thresholds as soil types and plant species remain unchanged for a long time in an area (Mu, personal communication). Second, these methods might be time consuming, in particular for images with large swath widths, because a number of pairs of NDVI\(_\infty\) and NDVI need to be calculated within each window throughout a satellite image. Consequently, high-performance computer systems might be needed to maintain rapid computation of these methods. Third, MODIS BRDF/Albedo products were used in both studies. However, the available BRDF products obtained from spaceborne sensors are relatively limited in number and coarse in spatial resolution. In addition, it should be noted that the improved methods proposed by Zeng et al. (2000), Montandon and Small (2008), Song et al. (2017), and Mu et al. (2018) were all applied to cases where coarse spatial resolution satellite images (mostly MODIS data) were used. Considering the performance of these methods using higher spatial resolution remote sensing images (or images other than the MODIS data), their applicability still needs further validation.

3.2. Methods for correcting NDVI defects

The NDVI is the most commonly used index for remote sensing of vegetation. Despite its usefulness, the NDVI is known to be saturated at high LAI levels and vulnerable to atmospheric perturbations, scaling, and soil background effects. Thus, the use of other more robust vegetation indices as substitutes for the NDVI of linear or semi-empirical NDVI models to monitor the vegetation cover changes has attracted growing attention from the scientific community.

The scaling effect of the NDVI cannot be addressed efficiently by image preprocessing techniques; therefore, it has become one of the main issues influencing \(f^c \) estimation based on RA algorithms. This issue involves more than the discrepancies among NDVI values derived from different observation scales, e.g., the NDVI of mixed pixels and end-members within pixels or the NDVI at a fine resolution where the landscape is homogeneous and at a coarse resolution where the landscape is heterogeneous. It also concerns the errors caused by the application of \(f^c \) retrieval models at inappropriate scales, e.g., where a model designed for small-scale analysis is applied to a large-scale analysis. Jiang et al. (2006), Zhang et al. (2006), Obata et al. (2012a, b) and Obata and Hume (2014) independently reported that ISMA was applied to the red and NIR bands to explore ways to correct the spatial scaling effect of the NDVI on RA algorithms. According to Zhang et al. (2006), the NDVI mixture model was applicable to estimating \(f^c \) on different scales. Obata et al. (2012a) explained the theoretical basis underlying the scaling effect and developed an NDVI-isoline-based linear mixture model, which was an extension of the RA algorithms to rectify the scaling effect in \(f^c \) retrievals. A similar analysis was conducted by Jiang et al. (2006), who proposed a scale-invariant index (i.e., the scaled difference vegetation index (SDVI)). The SDVI was calculated according to the formula of the linear NDVI model with the difference vegetation index (DVI) and proved it as a robust approach.

In view of the soil background effects, the optimized soil adjusted vegetation index (OSAVI) and modified soil adjusted vegetation index (MSAVI) were used in lieu of the NDVI (Gonsamo, 2010; Gonsamo and Chen, 2014; Merlin et al., 2010; Tsai et al., 2016), as both of these performed better at minimizing soil background variabilities (Qi et al., 1994; Rondeaux et al., 1996). Furthermore, the enhanced vegetation index (EVI) was chosen for deriving \(f^c \) by Cho et al. (2014), because it can minimize the soil background and atmospheric interference effects. The modified triangular vegetation index (MTVI2) was selected by Liu et al. (2008) as it minimizes the effects of the soil background and leaf chlorophyll, and maintains adequate sensitivity over a wide range of LAI. To address the saturation problem of the NDVI, Li et al. (2014) incorporated the average \(f^c \) estimates from the ratio vegetation index (RVI) and NDVI (hereafter denoted NDVI plus RVI) to obtain more accurate results than those yielded by a single VI. The variable atmospherically resistant index (VARI) also performed better than the NDVI in terms of \(f^c \) estimation (Jimenez-Munoz et al., 2009). Apart from the aforementioned vegetation indices, other vegetation indices (e.g., vegetation, bare soil, and shadow indices (VBSI) (Zhang et al., 2013)) have also been employed for \(f^c \) retrievals using RA algorithms. However, although these vegetation indices were used as substitutes for the NDVI, none of them is as the universal VI that can replace the other sufficiently.

4. Overview of RA algorithms

RA algorithms constitute a big branch of remote sensing methods for estimating \(f^c \). An overview, including a search and selection...
strategy, literature status, and performance evaluation, is now provided in this section to present the status quo and trends in the development of RA algorithms.

4.1. Search and selection strategy

This review is focused specifically on English-language peer-reviewed journal papers published between January 1990 and November 2019 that reported studies in which RA algorithms were applied to estimate f. Before query processing, we designed two major categories of terms to search the relevant literature: f-based terms (“fractional vegetation cover” OR “green vegetation fraction” OR “vegetation fraction coverage” OR “canopy fraction cover” OR “fraction of vegetation cover” OR “vegetation cover fraction”) and terms related to RA algorithms (“vegetation index” OR “NDVI”) OR (“spectral mixture analysis” OR “linear mixture model”) OR “scaled NDVI” OR “NDVI SMA” OR “linear NDVI model” OR “dimidiate pixel model” OR “pixel dichotomy model” OR “two-endmember mixing model” OR “quadratic NDVI model”). A TOPIC-based Boolean query search using f-based terms returned 489 records pertaining to the relevant studies on f, of which 234 publications also contained terms related to RA algorithms. These records were further screened by investigating thoroughly all the articles to exclude irrelevant studies with similar terms. Finally, 173 studies in which RA algorithms were used to estimate f were selected.

To conduct the present review, we derived a set of descriptive statistics from the 173 publications based on the following pre-defined criteria:

1. The linear NDVI model (for the semi-empirical NDVI model) and its analogous versions that employ other vegetation indices as substitutes for NDVI were regarded as linear VI models (for semi-empirical VI models) and then counted. As the formula of the scaled NDVI (see Eq. (10)) is identical to the right hand side of Eq. (6), we regarded the scaled NDVI as a linear VI model.
2. The studies in which multi-sensor images (Qi et al., 2000) or different RA algorithms (Li et al., 2013; Wittich and Hansing, 1995) or both (Montandon and Small, 2008) were used to derive f were occasionally divided into sub-studies and considered as individual cases according to the number of remotely sensed image types and corresponding models in the literature.
3. The spatial resolutions (abbreviated as “R”) of remote sensing images used to estimate f based on the RA algorithms in the selected studies were classified into four types: R ≤ 10 m; 10 m < R < 100 m; 100 m ≤ R < 1 km; and R ≥ 1 km. It should be noted that images with the same spatial resolution were treated as the same type in a study.

It should also be noted that these statistics are influenced by the study selection process employed in the present review and might lack completeness.

4.2. Literature status

4.2.1. Published trends

Over the past three decades, RA algorithms have been used in numerous applications as demonstrated by the 173 papers published in 62 academic journals on remote sensing, agriculture, forestry, wetlands, hydrology, and meteorology (Table 2). The top three journals in terms of publications related to the RA algorithms were found to be Remote Sensing, Remote Sensing of Environment, and International Journal of Remote Sensing. The number of published items (the bar in Fig. 3), as well as the general trend of the usage frequency of the RA algorithms (the broken line in Fig. 3), increased consistently in each five-year time interval between 1990 and 2019. Furthermore, among these RA algorithms, the linear VI model was the most frequently applied followed by the quadratic NDVI model. The NDVI mixture model was rarely used, and has not even been reported in the literature since 2010. The possible explanation, why the linear VI and quadratic NDVI models were more popular, could be related to their considerably simpler formulations as compared to the NDVI mixture model, as well as to the fact that they do not require any additional variables to be calculated, e.g., the extinction coefficient in the semi-empirical VI model.

4.2.2. Sensor type

The remote sensing data used in the selected literature were collected mainly from satellite sensors, although in several studies airborne sensor data, ground-based spectroradiometer measurements (e.g., ASD FieldSpecFR spectrometer data and MRS5 field-portable radiometer data), or simulated data were used. In general, the increasing usage of RA algorithms was closely related to the availability of remote sensing data, as well as to the innovations and increasing deployment of remote sensing instruments (Fig. 4). In terms of satellite images, early landmarks in the spatially explicit estimation of f used RA algorithms emerged almost 30 years ago through the usage of remote sensing images with low spatial resolution (R ≥ 1 km, e.g., the Advanced Very High Resolution Radiometer (AVHRR)). Although the higher spatial resolution Landsat Thematic Mapper (TM) satellite data were also collected at that time, they were not yet freely available to the public, which has limited their usage in the research. Despite the growing availability of time series satellite data in the 21st century, moderate-coarse (100 m ≤ R < 1 km) and moderate (10 m < R < 100 m) spatial resolutions satellite images became the most frequently employed data sources among those utilized for RA algorithms. The most frequently applied sensor type was the Landsat series (involving TM, Enhanced Thematic Mapper Plus (ETM+), and OLI) data, which was used in 31.9% of the studies, followed by the MODIS data (28.6%). This explains why RA algorithms are focused predominantly on moderate and low spatial resolution (R > 10 m) remote sensing applications. Nonetheless, in recent years, increased attention has been paid to the use of high-resolution satellite sensors (R ≤ 10 m, e.g., IKONOS, SPOT-5/HRG, RapidEye, WorldView-2, and ZY-3). Although there are strong biases depending on sensor type, most studies have made use of multispectral systems, and only a few cases of hyperspectral studies were found in which CASI, OMIS, Hyperion, or HJ-1 A/HSI sensors were used. Furthermore, the dominant image spatial resolutions in f estimation using RA algorithms are 30 m, 250 m, and 1 km, which correspond to the Landsat series, MODIS, and AVHRR data, respectively. Consequently, images at these three levels were specially sorted out in terms of the types of RA algorithms used (excluding the NDVI mixture model) (Fig. 5). Images with a 30-m spatial resolution were most frequently used for f estimation after the year 2000, while 1-km AVHRR images were the most frequently used between 1990 and 1999. Additionally, the linear VI model was most frequently applied to images with a 30-m spatial resolution, and the semi-empirical VI model has been rarely used for images with a 250-m, 1-km, and even lower spatial resolutions.

Table 2 Relevant journals that have published four or more of the papers related to RA algorithms. The search was conducted on November 5, 2019.

<table>
<thead>
<tr>
<th>Journals</th>
<th>Number of papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Sensing</td>
<td>21</td>
</tr>
<tr>
<td>Remote Sensing of Environment</td>
<td>21</td>
</tr>
<tr>
<td>International Journal of Remote Sensing</td>
<td>19</td>
</tr>
<tr>
<td>International Journal of Applied Earth Observation and Geoinformation</td>
<td>7</td>
</tr>
<tr>
<td>IEEE Transactions on Geoscience and Remote Sensing</td>
<td>6</td>
</tr>
<tr>
<td>Agricultural and Forest Meteorology</td>
<td>4</td>
</tr>
<tr>
<td>ISPRS Journal of Photogrammetry and Remote Sensing</td>
<td>4</td>
</tr>
<tr>
<td>Hydrology and Earth System Sciences</td>
<td>4</td>
</tr>
</tbody>
</table>
4.2.3. Geographic patterns and geoscientific applications

Research institutions corresponding to the selected articles are located in 23 countries (Fig. 6), mainly in Asia (accounting for 51%, especially China), followed by North America (24%, especially the United States), and Europe (19%). There has been relatively little research pertaining to the use of RA algorithms in Oceania, South and Central America, and Africa. Among the 173 publications, approximately 49% of the studies focused on the methodological issues, whereas the remainder concerned indirect applications. In particular, researchers in Asia paid more attention to methodological issues and the application of RA algorithms to the estimation of vegetation cover. Conversely, indirect applications have gained wider attention in Europe. In North America, the number of studies for the two aspects is nearly equal. In terms of vegetation types, RA algorithms can be used to determine f_c of varying plant species, such as crops (Liu et al., 2008), grasslands (Rundquist, 2002), forests (Yang et al., 2013), shrubbery (Zhou et al., 2009), desert vegetation (Jiapaer et al., 2011), and even aquatic plants (Cheruiyot et al., 2014).

RA algorithms play an important role in global f_c estimation (Wu et al., 2014; Zen et al., 2003) and serve as a feasible means of detecting vegetation recovery in areas that have experienced natural hazards, such as forest fires (Vila and Barbosa, 2010), typhoons (Wang and Xu, 2018), or earthquakes (Jiao et al., 2014). In addition, a large number of research works have assessed the effectiveness of RA algorithms for deriving spatiotemporal distributions of f_c at the regional scale. Fig. 6 shows the geographic locations of their study areas (except for the national- or global-scale studies) as presented in the literature. From Fig. 6, it can be seen that most studies were conducted in China, especially in areas on the northwestern side of the Hu Line (Hu, 1935), including such research sites as Mu Us Sandland (Cao et al., 2011; Liu...
et al., 2019), the Heihe River basin (Jia et al., 2017; Wang et al., 2014),
the Qaidam basin (Jin et al., 2016; Zhang et al., 2019), the Tibetan
Plateau (Liu et al., 2014; Wang et al., 2014), and the grasslands of Inner
Mongolia (Li et al., 2014; Li et al., 2013). The northwestern side of the
Hu Line is sparsely populated, whereas the dense population distribu-
tion in China is concentrated predominantly in the southeast; RA al-
lgorithms have rarely been applied in the latter. There were also many
research sites in Europe, particularly in Spain and Germany (Imukova
et al., 2015; Verger et al., 2009). Not many locations in the United
States appear in Fig. 6, however, this is mainly because many studies
conducted in the United States using RA algorithms were nationwide or
global in scale (Gallo et al., 2001; Jiang et al., 2010). In terms of the
geographic distribution of regional studies on \(f_c \), most of them were
conducted in northern temperate zones at latitudes between 25° and
55°N, while less attention was paid to tundra, boreal forest, tropical
rain forest, and tropical savanna ecosystems.

In terms of indirect applications utilizing \(f_c \) values derived by RA
algorithms, related studies included the calculation of land surface
parameters such as LAI (Propastin and Erasmi, 2010; Walthall et al.,
2004), M (Vicente-Serrano et al., 2004; Wang et al., 2018), LSE
(Sobrino et al., 2008), \(T_s \) (Agam et al., 2007; Bhattacharya and
Dadhwal, 2005), ET (Long and Singh, 2012; Tang et al., 2009), SEF (Li
et al., 2005; Liu et al., 2017), and IS (Kaspersen et al., 2015). As the
NDVI has been used traditionally as an indicator of vegetation abun-
dance to estimate the relationship between surface temperature and
vegetation (Petropoulos et al., 2009), RA algorithms were commonly
used to determine satellite-derived land surface energy fluxes (in-
cluding LSE, \(T_s \), ET, and SEF) and soil surface moisture analysis. In
addition to studies on indirect applications using visible-infrared re-
 mote sensing data, both previous and latest studies have reported that
combinations of RA algorithms and microwave remote sensing data
improved soil moisture retrieval (Hasan et al., 2014) or the dis-
aggregation of \(T_s \) (Amazirh et al., 2019).

4.3. Performance evaluation of RA algorithms

The present study reviewed the performance evaluation of RA al-
lgorithms performed in the previous research works in terms of two
aspects: comparisons of models within the RA family, and comparing
RA algorithms with other \(f_c \) estimation approaches.

Numerous studies have attempted to determine which model within
the RA family is the most effective in deriving \(f_c \) through a comparative
analysis of model sensitivity to the soil background (Ding et al., 2017;
Montandon and Small, 2008), scale (Jiang et al., 2006), and atmo-
spheric (Gonsamo, 2010) effects. In general, RA algorithms are affected
by soil noise mainly because of the sensitivity of VI values to soil optical

Fig. 5. Number of RA algorithms (excluding the NDVI mixture model) applied
to remotely sensed images with 30-m, 250-m, and 1-km spatial resolutions.

Fig. 6. World map displaying the geographic distribution of the selected studies.
properties. However, the quadratic NDVI model was found to be superior to the linear NDVI model in terms of reducing soil noise (Ding et al., 2017; Montandon and Small, 2008). In terms of the scale effect, the semi-empirical NDVI and quadratic NDVI models were found to outperform the linear NDVI model, as the former ones transform the scaled NDVI through power functions that reduce the positive bias of the scaled NDVI (Jiang et al., 2006). SDVI was concluded to be scale-invariant (Jiang et al., 2006) and less sensitive to the atmospheric scattering effects (Gonsamo, 2010). However, SDVI did not perform as well as expected in some applications using moderate and low spatial resolution satellite images (Ding et al., 2016a; Li et al., 2014; Merlin et al., 2010). In addition, several studies also assessed the applicability of various vegetation indices used in RA algorithms to perform f_c_estimation. The MSAVI (Wang et al., 2005), VARI (Jimenez-Munoz et al., 2009), NDVI plus RVI (Li et al., 2014), and MTVI2 (Liu et al., 2008) were suggested and confirmed as feasible alternatives to the NDVI.

Many studies also investigated the discrepancies between RA algorithms and other f_c_estimation approaches in terms of f_c_retrieval. RA algorithms were generally yielded reasonable f_c_estimates; however, in areas dominated by NPV (e.g., dry shrubs and sparse vegetation (e.g., desert plants) they tended to exhibit larger degrees of error compared with other f_c_estimation approaches, such as LSMA (Cheruiyot et al., 2014; Xiao and Moody, 2005), multiple endmember spectral mixture analysis (MMSA) (Liu et al., 2017), a combination of geometric-optical models with SMA (Cao et al., 2011), support vector machine (SVM) (Ge et al., 2018), and the modified three-band maximal gradient difference (TGDVI) model (Jiapaer et al., 2011). Additionally, Ding et al. (2016a) reported that the results yielded by RA algorithms were slightly better than those generated from the look-up table-based inversion of the PROSAIL model and were also faster in terms of computational time.

5. RA challenges in relation to the earth system science and future perspectives

5.1. Novel approaches for improving RA algorithms

One of the main ways to improve the RA algorithms is to develop or utilize a VI that is highly sensitive to the parameter of interest (i.e., f_c), but insensitive to the expected perturbing components (e.g., species, soil, shadow, and non-photosynthetic materials). In this regard, it is possible to consider the modified chlorophyll absorption reflectance index (MCARI_705,750), which uses bandwidths other than those of the traditional broadband VI and is designed to minimize the effects of soil and NPV (Jay et al., 2017; Wu et al., 2008), as a more appropriate alternative to the NDVI. In particular, in the context of the growing amount of freely available Sentinel-2 (S2) databases, as the central wavelengths of the S2 image band 3/5/6 are close to the hyperspectral bands used to calculate MCARI_705,750, the MCARI_705,750-based linear VI model is expected to mitigate the impact of the soil background and non-photosynthetic materials on f_c_estimation. However, the relationship between MCARI_705,750 and f_c_estimation requires further evaluation. Kallel et al. (2008) also suggested that fusion of vegetation indices, for example, MCARI/OSAVI (Daughtry et al., 2000), could be an alternative approach to improve the performance of RA algorithms. However, the means for rendering this combined VI approach applicable to RA algorithms to yield a more powerful and universal model for retrieving f_c also requires further research. In addition, previous studies (Guerschman et al., 2009; Hill et al., 2016) revealed that the combination of visible, NIR and the shortwave-infrared (SWIR) bands could facilitate the extraction of f_c from pixels composed of green vegetation, bare soil, and the NPV. This motivates development of three-endmember (including photosynthetic vegetation, NPV or shadow, and bare soil) mixing models as an extension of RA algorithms. However, the use of these models implies that sensors must meet higher band setting requirements, i.e., they should be equipped with not only the conventional visible and NIR spectral bands, but also the SWIR bands. Therefore, for satellite sensors having only visible and NIR bands and lacking SWIR bands, further investigation should be focused on how to improve the performance of RA algorithms by overcoming the problem associated with a limited spectral resolution.

In addition to the development of more suitable vegetation indices, the improvement in the accuracy of V_\text{sunlit} and V_\text{shade} estimates by rendering both values less sensitive to plant species and soil background is another future research priority. In this context, the endmember generation algorithm (EGA)—including the minimum volume transform (MVT) (Craig, 1994; Hendrix et al., 2012), non-negative matrix factorization (NMF) (Pauca et al., 2006; Tong et al., 2017), and independent component analysis (ICA) (Chen and Zhang, 1999; Xia et al., 2011)—may be appropriate. The EGA has been used mainly for analyzing hyperspectral remote sensing images; therefore, the issue of effectively using EGA for multispectral images needs to be first be addressed.

Furthermore, the fractional cover of green vegetation should be further divided into sunlit and shaded vegetation components because of the difference between sunlit and shaded leaves in terms of absorbed photosynthetically active radiation (PAR). This would be beneficial for optimizing the precision of the light use efficiency models to understand the process of carbon and water cycles of terrestrial ecosystems. Therefore, the development of a simple, available, and robust algorithm based on the formulae of RA algorithms for estimating sunlit and shaded vegetation cover is critically required.

5.2. Challenges and future prospects on applications and sensors

As discussed above in Section 4.2.3, RA algorithms have been widely used over the last three decades. Nevertheless, in certain cases associated with LULC changes, such as those where the potential presence of landslides and land flows needs to be inferred (Chen and Huang, 2013), drought conditions need to be quantitatively estimated (Barbosa et al., 2019) and post-fire vegetation recovery monitoring is required (Veraverbeke et al., 2012), very little attention has been paid to the use of RA algorithms. Natural hazards are major threats to human life and the world economy. As is known, rapid and prompt detection of the vegetation cover changes is specifically important for disaster prevention and mitigation and post-disaster recovery (Dabigamuwa et al., 2016; Sekizawa et al., 2015). Specifically, in the face of recurring droughts in arid and semi-arid regions (e.g., southern Africa), detailed spatiotemporal patterns of drought are vital for scheduling agricultural management practices and thus ensuring food security. The modified perpendicularly directed index (MDPI) was developed by Ghalam et al., (2007) by introducing the f_c_derived by the semi-empirical NDVI model and has been efficiently used for crop drought monitoring. In addition, in view of the frequent fires in the Amazon forest, pragmatic algorithms for monitoring post-fire vegetation recovery efficiently may be helpful for forest management. Vila and Barbosa (2010) demonstrated that post-fire vegetation regrowth detection using the semi-empirical NDVI model was more accurate than that using SMA, although both underestimated f_c (possibly, owing to the presence of the NPV). Therefore, mitigating the NPV effects is a priority for broadening the application of RA algorithms. In this regard, as discussed in Section 5.1, the MCARI_705,750-based linear VI model might be more useful for assessing post-fire vegetation recovery.

Focusing on sensor types, we note that RA algorithms have rarely been applied to Sentinel-2 data, which have come to be among the most popular sources of remote sensing data used for the derivation of f_c (Verrelst et al., 2012; Wang et al., 2018). Three newly added red-edge wavelength bands of S2, which are not presented in many other satellite sensors, such as the Landsat series, may lead to breakthrough innovations in RA algorithms, because red-edge-based indices were found to be highly correlated with the vegetation cover in previous studies (Gitelson, 2013; Liu et al., 2007). A recent study by Feng et al. (2017) showed that use of the red-edge slope instead of the NDVI in the linear VI and semi-empirical VI models could improve the precision of the...
retained f_r values. In addition, China’s high-resolution earth observation system (CHEOS) satellite series also play an important role in long-term remote sensing services (Gu and Tong, 2015). According to Jia et al. (2016), GF-1 wide field view (WFV) surface reflectance data can produce satisfactory f_r products. However, thus far, only little international attention has been paid to the CHEOS satellite series. In the last several years, the GaoFen (GF) satellite series (GF-2/-4/-5/-6) were launched successively and have significantly increased the earth observation system’s capacity. More recently, the 16-m data of GF-1 and GF-6 can be freely downloaded by users on China National Space Administration (CNSA) GEO platform (access at: http://www.cnsgaeo.com). Other GF satellite images (e.g., GF-5) are not available as open-access satellite data, but they are expected to be in the near future. Therefore, the CHEOS satellite series are expected to aid in the near real-time quantitative measurement of vegetation, which could bridge the data gaps in the long revisit cycle of current operating earth resource satellites (e.g., the Landsat series) and could respond to the demand for accurate and prompt f_r estimation. However, development of approaches for harmonizing GF satellite observations to achieve the maximum benefit from current earth observation instruments is a significant challenge. In brief, the S2 data and GF images have extraordinary potential for deriving spatial and temporal distributions of f_r. However, the applicability of combinations of such data with RA algorithms for vegetation cover monitoring remains largely unexplored and requires further investigation.

6. Conclusions

Given the increasing interest in the exploration of land surfaces, regularly and promptly updated vegetation cover products are essential. This requires convenient and powerful processing methods for quantifying f_r. In this review, we discussed the background, issues, status quo and trends, challenges, and future prospects of RA algorithms based on 173 selected scientific publications. The most important key findings are listed below:

(1) The number of studies using RA algorithms has increased constantly over the last three decades, and the linear VI model has been the most frequently used within the RA family. The Landsat series and MODIS remain the most frequently used data sources for the f_r estimation using RA algorithms, although the most recent studies have focused increasingly on the use of high-resolution satellite data from other spaceborne sensors. Regional studies of f_r have been conducted mainly in the northern temperate zones at latitudes between 25° and 55°N, whereas regional studies that include Oceania, South/Central America, and Africa were presented limitingly.

(2) In the related research, three main issues influencing the inversion accuracy of f_r using RA algorithms are to determine $NDVI_{	ext{top}}$ and $NDVI_{	ext{b}}$ values, to correct for the inherent limitations of NDVI, and to mitigate the NPV effects. For large-scale applications, we recommend the use of the improved methods proposed by Zeng et al. (2000), Montandon and Small (2008), Song et al. (2017), and Mu et al. (2018). We also emphasize the importance of evaluating the performance of these improved methods using remote sensing images with other spatial resolutions, in addition to the Landsat and MODIS data. In addition, the MSAVI, VARI, NDVI plus RVI, and MTVI2 could be feasible alternatives to the NDVI in RA algorithms for f_r estimation. We recommend that future research considers the substitution of NDVI by red-edge vegetation indices (e.g., MCAri705,750) and utilizes the new generation of satellite sensors (e.g., S2, CHEOS satellites) for near-real-time retrieval of f_r.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (No. 41771370, 41871230), the National Key Research and Development Program of China (No. 2017YFD0600903, 2018YFA0605503), and the High-resolution Earth Observation Project of China (No. 03-Y20A04-9001-17/18, 30-Y20A07-9003-17/18). The first author especially acknowledges the tremendous amount of feedback of Dr. Xubin Zeng which has greatly improved the paper. We thank Dr. Lixia Ma and Dr. Yan Huang who read the early version of this study. Finally, we would like to provide our great gratitude to anonymous reviewers and members of the editorial team for their helpful and valuable comments that was of great help to increase the quality of the manuscript.

References

